Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Res Pract Thromb Haemost ; 6(2): e12678, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35284776

RESUMEN

Background: Low plasma levels of protein C or protein S are associated with venous thromboembolism rather than myocardial infarction. The high coagulant activity in patients with thrombophilia with a (familial) defect in protein C or S is explained by defective protein C activation, involving thrombomodulin and protein S. This causes increased plasmatic thrombin generation. Objective: Assess the role of platelets in the thrombus- and fibrin-forming potential in patients with familial protein C or protein S deficiency under high-shear flow conditions. Patients/Methods: Whole blood from 23 patients and 15 control subjects was perfused over six glycoprotein VI-dependent microspot surfaces. By real-time multicolor microscopic imaging, kinetics of platelet thrombus and fibrin formation were characterized in 49 parameters. Results and Conclusion: Whole-blood flow perfusion over collagen, collagen-like peptide, and fibrin surfaces with low or high GPVI dependency indicated an unexpected impairment of platelet activation, thrombus phenotype, and fibrin formation but unchanged platelet adhesion, observed in patients with protein C deficiency and to a lesser extent protein S deficiency, when compared to controls. The defect extended from diminished phosphatidylserine exposure and thrombus contraction to delayed and suppressed fibrin formation. The mechanism was thrombomodulin independent, and may involve negative platelet priming by plasma components.

2.
Sci Rep ; 10(1): 21407, 2020 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-33293576

RESUMEN

Hyperlipidemia is a well-established risk factor for cardiovascular diseases. Millions of people worldwide display mildly elevated levels of plasma lipids and cholesterol linked to diet and life-style. While the prothrombotic risk of severe hyperlipidemia has been established, the effects of moderate hyperlipidemia are less clear. Here, we studied platelet activation and arterial thrombus formation in Apoe-/- and Ldlr-/- mice fed a normal chow diet, resulting in mildly increased plasma cholesterol. In blood from both knockout mice, collagen-dependent thrombus and fibrin formation under flow were enhanced. These effects did not increase in severe hyperlipidemic blood from aged mice and upon feeding a high-fat diet (Apoe-/- mice). Bone marrow from wild-type or Ldlr-/- mice was transplanted into irradiated Ldlr-/- recipients. Markedly, thrombus formation was enhanced in blood from chimeric mice, suggesting that the hyperlipidemic environment altered the wild-type platelets, rather than the genetic modification. The platelet proteome revealed high similarity between the three genotypes, without clear indication for a common protein-based gain-of-function. The platelet lipidome revealed an altered lipid profile in mildly hyperlipidemic mice. In conclusion, in Apoe-/- and Ldlr-/- mice, modest elevation in plasma and platelet cholesterol increased platelet responsiveness in thrombus formation and ensuing fibrin formation, resulting in a prothrombotic phenotype.


Asunto(s)
Apolipoproteínas E/genética , Plaquetas/química , Hiperlipidemias/complicaciones , Lipidómica/métodos , Proteómica/métodos , Receptores de LDL/genética , Trombosis/sangre , Animales , Colesterol/sangre , Modelos Animales de Enfermedad , Femenino , Técnicas de Inactivación de Genes , Hiperlipidemias/sangre , Hiperlipidemias/genética , Masculino , Ratones , Activación Plaquetaria , Trombosis/etiología
3.
Sci Rep ; 10(1): 11910, 2020 07 17.
Artículo en Inglés | MEDLINE | ID: mdl-32680988

RESUMEN

In haemostasis and thrombosis, platelet, coagulation and anticoagulation pathways act together to produce fibrin-containing thrombi. We developed a microspot-based technique, in which we assessed platelet adhesion, platelet activation, thrombus structure and fibrin clot formation in real time using flowing whole blood. Microspots were made from distinct platelet-adhesive surfaces in the absence or presence of tissue factor, thrombomodulin or activated protein C. Kinetics of platelet activation, thrombus structure and fibrin formation were assessed by fluorescence microscopy. This work revealed: (1) a priming role of platelet adhesion in thrombus contraction and subsequent fibrin formation; (2) a surface-independent role of tissue factor, independent of the shear rate; (3) a mechanism of tissue factor-enhanced activation of the intrinsic coagulation pathway; (4) a local, suppressive role of the anticoagulant thrombomodulin/protein C pathway under flow. Multiparameter analysis using blood samples from patients with (anti)coagulation disorders indicated characteristic defects in thrombus formation, in cases of factor V, XI or XII deficiency; and in contrast, thrombogenic effects in patients with factor V-Leiden. Taken together, this integrative phenotyping approach of platelet-fibrin thrombus formation has revealed interaction mechanisms of platelet-primed key haemostatic pathways with alterations in patients with (anti)coagulation defects. It can help as an important functional add-on whole-blood phenotyping.


Asunto(s)
Anticoagulantes/metabolismo , Coagulación Sanguínea , Plaquetas/metabolismo , Hemorreología , Trombosis/sangre , Trombosis/fisiopatología , Adulto , Estudios de Casos y Controles , Femenino , Fibrina/metabolismo , Humanos , Cinética , Masculino , Persona de Mediana Edad , Fenotipo , Proteína C/metabolismo , Trombomodulina/metabolismo , Tromboplastina/metabolismo
4.
J Thromb Haemost ; 18(4): 931-941, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31863548

RESUMEN

BACKGROUND: In the intact vessel wall, endothelial cells form a barrier between the blood and the remaining vascular structures, serving to maintain blood fluidity and preventing platelet activation and fibrin clot formation. The spatiotemporal space of this inhibition is largely unknown. OBJECTIVE: To assess the local inhibitory roles of a discontinuous endothelium, we developed a vessel-on-a-chip model, consisting of a microfluidic chamber coated with the thrombogenic collagen and tissue factor (TF), and covered with patches of human endothelial cells. By flow perfusion of human blood and plasma, the heterogeneous formation of platelet aggregates and fibrin clots was monitored by multicolor fluorescence microscopy. RESULTS: On collagen/TF coatings, a coverage of 40% to 60% of human umbilical vein endothelial cells resulted in a strong overall delay in platelet deposition and fibrin fiber formation under flow. Fibrin formation colocalized with the deposited platelets, and was restricted to regions in between endothelial cells, thus pointing to immediate local suppression of the clotting process. Fibrin kinetics were enhanced by treatment of the cells with heparinase III, partially disrupting the glycocalyx, and to a lesser degree by antagonism of the endothelial thrombomodulin. Co-coating of purified thrombomodulin and collagen had a similar coagulation-suppressing effect as endothelial thrombomodulin. CONCLUSIONS: In this vessel-on-a-chip system with patches of endothelial cells on thrombogenic surfaces, the coagulant activity under flow is regulated by: (a) the residual exposure of trigger (collagen/TF), (b) the endothelial glycocalyx, and (c) to a lesser degree the endothelial thrombomodulin.


Asunto(s)
Células Endoteliales , Agregación Plaquetaria , Coagulación Sanguínea , Plaquetas , Endotelio , Humanos , Dispositivos Laboratorio en un Chip
5.
TH Open ; 3(3): e273-e285, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31511847

RESUMEN

The contributions of coagulation factor XI (FXI) and FXII to human clot formation is not fully known. Patients with deficiency in FXI have a variable mild bleeding risk, whereas FXII deficiency is not associated with bleeding. These phenotypes make FXII and FXI attractive target proteins in anticoagulant therapy. Here, we studied the mechanisms of fibrin clot formation, stability, and fibrinolytic degradation in patients with severe FXI or FXII deficiency. Thrombin generation was triggered in platelet-poor (PPP) and platelet-rich plasma (PRP) with the biological FXII trigger sulfatides. Intrinsic and extrinsic thrombus formation and degradation in whole blood were determined with rotational thromboelastometry (ROTEM). Clot formation under flow was assessed by perfusion of whole blood over collagen microspots with(out) tissue factor (TF). Thrombin generation and clot formation were delayed in FXII- and FXI-deficient patients triggered with sulfatides. In FXI-deficient plasma, this delay was more pronounced in PRP compared to PPP. In whole blood of FXII-deficient patients, clots were smaller but resistance to fibrinolysis was normal. In whole blood of FXI-deficient patients, clot formation was normal but the time to complete fibrinolysis was prolonged. In flow chamber experiments triggered with collagen/TF, platelet coverage was reduced in severe compared with moderate FXI deficiency, and fibrin formation was impaired. We conclude that quantitative defects in FXII and FXI have a substantial impact on contact activation-triggered coagulation. Furthermore, FXI deficiency has a dose-dependent suppressing effect on flow-mediated and platelet/TF-dependent clot formation. These last data highlight the contribution of particularly FXI to hemostasis.

6.
Front Cardiovasc Med ; 6: 99, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31417909

RESUMEN

Genetically modified mice are indispensable for establishing the roles of platelets in arterial thrombosis and hemostasis. Microfluidics assays using anticoagulated whole blood are commonly used as integrative proxy tests for platelet function in mice. In the present study, we quantified the changes in collagen-dependent thrombus formation for 38 different strains of (genetically) modified mice, all measured with the same microfluidics chamber. The mice included were deficient in platelet receptors, protein kinases or phosphatases, small GTPases or other signaling or scaffold proteins. By standardized re-analysis of high-resolution microscopic images, detailed information was obtained on altered platelet adhesion, aggregation and/or activation. For a subset of 11 mouse strains, these platelet functions were further evaluated in rhodocytin- and laminin-dependent thrombus formation, thus allowing a comparison of glycoprotein VI (GPVI), C-type lectin-like receptor 2 (CLEC2) and integrin α6ß1 pathways. High homogeneity was found between wild-type mice datasets concerning adhesion and aggregation parameters. Quantitative comparison for the 38 modified mouse strains resulted in a matrix visualizing the impact of the respective (genetic) deficiency on thrombus formation with detailed insight into the type and extent of altered thrombus signatures. Network analysis revealed strong clusters of genes involved in GPVI signaling and Ca2+ homeostasis. The majority of mice demonstrating an antithrombotic phenotype in vivo displayed with a larger or smaller reduction in multi-parameter analysis of collagen-dependent thrombus formation in vitro. Remarkably, in only approximately half of the mouse strains that displayed reduced arterial thrombosis in vivo, this was accompanied by impaired hemostasis. This was also reflected by comparing in vitro thrombus formation (by microfluidics) with alterations in in vivo bleeding time. In conclusion, the presently developed multi-parameter analysis of thrombus formation using microfluidics can be used to: (i) determine the severity of platelet abnormalities; (ii) distinguish between altered platelet adhesion, aggregation and activation; and (iii) elucidate both collagen and non-collagen dependent alterations of thrombus formation. This approach may thereby aid in the better understanding and better assessment of genetic variation that affect in vivo arterial thrombosis and hemostasis.

7.
Sci Rep ; 9(1): 8333, 2019 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-31171812

RESUMEN

Zinc (Zn2+) can modulate platelet and coagulation activation pathways, including fibrin formation. Here, we studied the (patho)physiological consequences of abnormal platelet Zn2+ storage and release. To visualize Zn2+ storage in human and mouse platelets, the Zn2+ specific fluorescent dye FluoZin3 was used. In resting platelets, the dye transiently accumulated into distinct cytosolic puncta, which were lost upon platelet activation. Platelets isolated from Unc13d-/- mice, characterized by combined defects of α/δ granular release, showed a markedly impaired Zn2+ release upon activation. Platelets from Nbeal2-/- mice mimicking Gray platelet syndrome (GPS), characterized by primarily loss of the α-granule content, had strongly reduced Zn2+ levels, which was also confirmed in primary megakaryocytes. In human platelets isolated from patients with GPS, Hermansky-Pudlak Syndrome (HPS) and Storage Pool Disease (SPD) altered Zn2+ homeostasis was detected. In turbidity and flow based assays, platelet-dependent fibrin formation was impaired in both Nbeal2-/- and Unc13d-/- mice, and the impairment could be partially restored by extracellular Zn2+. Altogether, we conclude that the release of ionic Zn2+ store from secretory granules upon platelet activation contributes to the procoagulant role of Zn2+ in platelet-dependent fibrin formation.


Asunto(s)
Plaquetas/citología , Proteínas Sanguíneas/genética , Proteínas de la Membrana/genética , Deficiencia de Almacenamiento del Pool Plaquetario/genética , Zinc/metabolismo , Adolescente , Adulto , Animales , Coagulación Sanguínea , Niño , Citosol/metabolismo , Femenino , Fibrina/química , Síndrome de Plaquetas Grises/genética , Voluntarios Sanos , Síndrome de Hermanski-Pudlak/genética , Homeostasis , Humanos , Masculino , Ratones , Ratones Noqueados , Microscopía Confocal , Microscopía Fluorescente , Nefelometría y Turbidimetría , Activación Plaquetaria
8.
Haematologica ; 104(6): 1256-1267, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30545925

RESUMEN

In combination with microspotting, whole-blood microfluidics can provide high-throughput information on multiple platelet functions in thrombus formation. Based on assessment of the inter- and intra-subject variability in parameters of microspot-based thrombus formation, we aimed to determine the platelet factors contributing to this variation. Blood samples from 94 genotyped healthy subjects were analyzed for conventional platelet phenotyping: i.e. hematologic parameters, platelet glycoprotein (GP) expression levels and activation markers (24 parameters). Furthermore, platelets were activated by ADP, CRP-XL or TRAP. Parallel samples were investigated for whole-blood thrombus formation (6 microspots, providing 48 parameters of adhesion, aggregation and activation). Microspots triggered platelet activation through GP Ib-V-IX, GPVI, CLEC-2 and integrins. For most thrombus parameters, inter-subject variation was 2-4 times higher than the intra-subject variation. Principal component analyses indicated coherence between the majority of parameters for the GPVI-dependent microspots, partly linked to hematologic parameters, and glycoprotein expression levels. Prediction models identified parameters per microspot that were linked to variation in agonist-induced αIIbß3 activation and secretion. Common sequence variation of GP6 and FCER1G, associated with GPVI-induced αIIbß3 activation and secretion, affected parameters of GPVI-and CLEC-2-dependent thrombus formation. Subsequent analysis of blood samples from patients with Glanzmann thrombasthenia or storage pool disease revealed thrombus signatures of aggregation-dependent parameters that were subject-dependent, but not linked to GPVI activity. Taken together, this high-throughput elucidation of thrombus formation revealed patterns of inter-subject differences in platelet function, which were partly related to GPVI-induced activation and common genetic variance linked to GPVI, but also included a distinct platelet aggregation component.


Asunto(s)
Plaquetas/metabolismo , Activación Plaquetaria , Trombosis/etiología , Trombosis/metabolismo , Biomarcadores , Citometría de Flujo , Ensayos Analíticos de Alto Rendimiento , Humanos , Inmunofenotipificación , Agregación Plaquetaria , Recuento de Plaquetas , Pruebas de Función Plaquetaria , Glicoproteínas de Membrana Plaquetaria/metabolismo , Trombosis/diagnóstico
9.
Blood ; 132(13): 1413-1425, 2018 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-29891536

RESUMEN

The immunoreceptor tyrosine-based inhibitory motif (ITIM)-containing receptor G6b-B has emerged as a key regulator of platelet homeostasis. However, it remains unclear how it mediates its effects. Tyrosine phosphorylation of ITIM and immunoreceptor tyrosine-based switch motif (ITSM) within the cytoplasmic tail of G6b-B provides a docking site for Src homology 2 domain-containing protein-tyrosine phosphatases Shp1 and Shp2, which are also critical regulators of platelet production and function. In this study, we investigate the physiological consequences of uncoupling G6b-B from Shp1 and Shp2. To address this, we generated a transgenic mouse model expressing a mutant form of G6b-B in which tyrosine residues 212 and 238 within ITIM and ITSM were mutated to phenylalanine. Mice homozygous for the mutation (G6b-B diY/F) were macrothrombocytopenic, as a result of the reduction in platelet production, and had large clusters of megakaryocytes and myelofibrosis at sites of hematopoiesis, similar to those observed in G6b-deficient mice and patients. Platelets from G6b-B diY/F mice were hyporesponsive to collagen, as a result of the significant reduction in the expression of the immunoreceptor tyrosine-based activation motif (ITAM)-containing collagen receptor complex GPVI-FcR γ-chain, as well as thrombin, which could be partially rescued by costimulating the platelets with adenosine diphosphate. In contrast, platelets from G6b-B diY/F, G6b KO, and megakaryocyte-specific Shp2 KO mice were hyperresponsive to antibody-mediated cross-linking of the hemi-ITAM-containing podoplanin receptor CLEC-2, suggesting that G6b-B inhibits CLEC-2-mediated platelet activation through Shp2. Findings from this study demonstrate that G6b-B must engage with Shp1 and Shp2 to mediate its regulatory effects on platelet homeostasis.


Asunto(s)
Plaquetas/patología , Proteína Tirosina Fosfatasa no Receptora Tipo 11/metabolismo , Proteína Tirosina Fosfatasa no Receptora Tipo 6/metabolismo , Receptores Inmunológicos/metabolismo , Trombocitopenia/metabolismo , Animales , Sitios de Unión , Plaquetas/metabolismo , Homeostasis , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Modelos Moleculares , Fosforilación , Mutación Puntual , Mapas de Interacción de Proteínas , Proteína Tirosina Fosfatasa no Receptora Tipo 11/química , Proteína Tirosina Fosfatasa no Receptora Tipo 6/química , Receptores Inmunológicos/química , Receptores Inmunológicos/genética , Transducción de Señal , Trombocitopenia/genética , Trombocitopenia/patología , Dominios Homologos src
10.
Blood ; 132(13): 1399-1412, 2018 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-29898956

RESUMEN

Unlike primary myelofibrosis (PMF) in adults, myelofibrosis in children is rare. Congenital (inherited) forms of myelofibrosis (cMF) have been described, but the underlying genetic mechanisms remain elusive. Here we describe 4 families with autosomal recessive inherited macrothrombocytopenia with focal myelofibrosis due to germ line loss-of-function mutations in the megakaryocyte-specific immunoreceptor tyrosine-based inhibitory motif (ITIM)-containing receptor G6b-B (G6b, C6orf25, or MPIG6B). Patients presented with a mild-to-moderate bleeding diathesis, macrothrombocytopenia, anemia, leukocytosis and atypical megakaryocytes associated with a distinctive, focal, perimegakaryocytic pattern of bone marrow fibrosis. In addition to identifying the responsible gene, the description of G6b-B as the mutated protein potentially implicates aberrant G6b-B megakaryocytic signaling and activation in the pathogenesis of myelofibrosis. Targeted insertion of human G6b in mice rescued the knockout phenotype and a copy number effect of human G6b-B expression was observed. Homozygous knockin mice expressed 25% of human G6b-B and exhibited a marginal reduction in platelet count and mild alterations in platelet function; these phenotypes were more severe in heterozygous mice that expressed only 12% of human G6b-B. This study establishes G6b-B as a critical regulator of platelet homeostasis in humans and mice. In addition, the humanized G6b mouse will provide an invaluable tool for further investigating the physiological functions of human G6b-B as well as testing the efficacy of drugs targeting this receptor.


Asunto(s)
Mutación con Pérdida de Función , Mielofibrosis Primaria/congénito , Receptores Inmunológicos/genética , Trombocitopenia/congénito , Adolescente , Adulto , Animales , Plaquetas/metabolismo , Plaquetas/patología , Niño , Preescolar , Femenino , Técnicas de Sustitución del Gen , Humanos , Lactante , Masculino , Megacariocitos/metabolismo , Megacariocitos/patología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Linaje , Mielofibrosis Primaria/genética , Mielofibrosis Primaria/patología , Trombocitopenia/genética , Trombocitopenia/patología , Adulto Joven
11.
Platelets ; 29(7): 662-669, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-29537929

RESUMEN

In recent years, considerable progress has been made in understanding the mechanisms involved in platelet activation during hemostasis and thrombosis. Parallel-plate flow chambers and other microfluidic devices have markedly contributed to this insight. Conversely, such flow devices are now increasingly used to monitor the combined processes of platelet aggregation, thrombus formation, and coagulation in human blood. Currently, by combining microspotting and multi-color fluorescence microscopy, this technology offers the capability of high-throughput measurement of platelet activation processes, even in small blood samples. Here we review the potential of flow chamber devices for complex (multiparameter) platelet and coagulation phenotyping, focusing on patients with (genetic) platelet- or coagulation-based bleeding disorders as well as monitoring of antithrombotic medication. Animal studies are not discussed.


Asunto(s)
Ensayos Analíticos de Alto Rendimiento , Agregación Plaquetaria , Pruebas de Función Plaquetaria , Animales , Coagulación Sanguínea , Plaquetas/metabolismo , Citoesqueleto/metabolismo , Hemostasis , Humanos , Adhesividad Plaquetaria , Pruebas de Función Plaquetaria/instrumentación , Pruebas de Función Plaquetaria/métodos , Trombosis/sangre , Trombosis/diagnóstico , Trombosis/tratamiento farmacológico
12.
Blood ; 131(10): 1122-1144, 2018 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-29301754

RESUMEN

Src family kinases (SFKs) coordinate the initiating and propagating activation signals in platelets, but it remains unclear how they are regulated. Here, we show that ablation of C-terminal Src kinase (Csk) and receptor-like protein tyrosine-phosphatase CD148 in mice results in a dramatic increase in platelet SFK activity, demonstrating that these proteins are essential regulators of platelet reactivity. Paradoxically, Csk/CD148-deficient mice exhibit reduced in vivo and ex vivo thrombus formation and increased bleeding following injury rather than a prothrombotic phenotype. This is a consequence of multiple negative feedback mechanisms, including downregulation of the immunoreceptor tyrosine-based activation motif (ITAM)- and hemi-ITAM-containing receptors glycoprotein VI (GPVI)-Fc receptor (FcR) γ-chain and CLEC-2, respectively and upregulation of the immunoreceptor tyrosine-based inhibition motif (ITIM)-containing receptor G6b-B and its interaction with the tyrosine phosphatases Shp1 and Shp2. Results from an analog-sensitive Csk mouse model demonstrate the unconventional role of SFKs in activating ITIM signaling. This study establishes Csk and CD148 as critical molecular switches controlling the thrombotic and hemostatic capacity of platelets and reveals cell-intrinsic mechanisms that prevent pathological thrombosis from occurring.


Asunto(s)
Plaquetas/metabolismo , Homeostasis , Trombosis/metabolismo , Familia-src Quinasas/metabolismo , Secuencias de Aminoácidos , Animales , Plaquetas/patología , Proteína Tirosina Quinasa CSK , Ratones , Ratones Noqueados , Glicoproteínas de Membrana Plaquetaria/genética , Glicoproteínas de Membrana Plaquetaria/metabolismo , Proteína Tirosina Fosfatasa no Receptora Tipo 11/genética , Proteína Tirosina Fosfatasa no Receptora Tipo 11/metabolismo , Proteína Tirosina Fosfatasa no Receptora Tipo 6/genética , Proteína Tirosina Fosfatasa no Receptora Tipo 6/metabolismo , Proteínas Tirosina Fosfatasas Clase 3 Similares a Receptores/genética , Proteínas Tirosina Fosfatasas Clase 3 Similares a Receptores/metabolismo , Trombosis/genética , Familia-src Quinasas/genética
13.
Nat Commun ; 8: 16058, 2017 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-28703137

RESUMEN

Linking non-coding genetic variants associated with the risk of diseases or disease-relevant traits to target genes is a crucial step to realize GWAS potential in the introduction of precision medicine. Here we set out to determine the mechanisms underpinning variant association with platelet quantitative traits using cell type-matched epigenomic data and promoter long-range interactions. We identify potential regulatory functions for 423 of 565 (75%) non-coding variants associated with platelet traits and we demonstrate, through ex vivo and proof of principle genome editing validation, that variants in super enhancers play an important role in controlling archetypical platelet functions.


Asunto(s)
Plaquetas/fisiología , Elementos de Facilitación Genéticos , Eritroblastos/química , Variación Genética , Megacariocitos/química , Cromatina , Humanos , Regiones Promotoras Genéticas
14.
Sci Transl Med ; 9(384)2017 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-28381538

RESUMEN

Chemokines orchestrate leukocyte trafficking and function in health and disease. Heterophilic interactions between chemokines in a given microenvironment may amplify, inhibit, or modulate their activity; however, a systematic evaluation of the chemokine interactome has not been performed. We used immunoligand blotting and surface plasmon resonance to obtain a comprehensive map of chemokine-chemokine interactions and to confirm their specificity. Structure-function analyses revealed that chemokine activity can be enhanced by CC-type heterodimers but inhibited by CXC-type heterodimers. Functional synergism was achieved through receptor heteromerization induced by CCL5-CCL17 or receptor retention at the cell surface via auxiliary proteoglycan binding of CCL5-CXCL4. In contrast, inhibitory activity relied on conformational changes (in CXCL12), affecting receptor signaling. Obligate CC-type heterodimers showed high efficacy and potency and drove acute lung injury and atherosclerosis, processes abrogated by specific CCL5-derived peptide inhibitors or knock-in of an interaction-deficient CXCL4 variant. Atheroprotective effects of CCL17 deficiency were phenocopied by a CCL5-derived peptide disrupting CCL5-CCL17 heterodimers, whereas a CCL5 α-helix peptide mimicked inhibitory effects on CXCL12-driven platelet aggregation. Thus, formation of specific chemokine heterodimers differentially dictates functional activity and can be exploited for therapeutic targeting.


Asunto(s)
Quimiocinas/metabolismo , Inflamación/metabolismo , Inflamación/patología , Mapeo de Interacción de Proteínas , Enfermedad Aguda , Animales , Plaquetas/metabolismo , Enfermedad Crónica , Modelos Animales de Enfermedad , Espectroscopía de Resonancia Magnética , Ratones Endogámicos C57BL , Péptidos/metabolismo , Unión Proteica , Multimerización de Proteína
15.
Thromb Res ; 154: 7-15, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28384443

RESUMEN

BACKGROUND: ß-thromboglobulins are derived from the cleavage of the CXC chemokine platelet basic protein and are released in high concentrations by activated platelets. Platelet-derived ß-thromboglobulins (ßTG) share 70% homology with platelet factor 4 (PF4), another CXC chemokine released by activated platelets. PF4 modulates coagulation by inhibiting heparin-antithrombin interactions, promoting protein C activation, and attenuating the activity of activated protein C. In contrast, the effect of ßTG on coagulation is unknown. AIM/METHODS: Clotting times, thrombin generation, chromogenic clotting factor assays, and surface plasmon resonance (SPR) were used to assess the effect of purified ßTG on coagulation. RESULTS: In normal pooled plasma, ßTG shortened the lagtime and time to peak thrombin generation of tissue factor (TF)-dependent and TF-independent thrombin generation. In factor VIII and factor IX-deficient plasmas, ßTG induced thrombin generation in the absence of a TF stimulus and in the presence of anti-TF and factor VIIa inhibitory antibodies. The procoagulant effect was not observed when thrombin generation was independent of factor X activation (supplementation of factor X-deficient plasma with factor Xa). Cleavage of a factor Xa-specific chromogenic substrate was observed when ßTG was incubated with factor X, suggesting a direct interaction between ßTG and factor X. Using SPR, ßTG were found to bind to immobilised factor X in a dose dependent manner. CONCLUSION: ßTG modulate coagulation in vitro via an interaction with factor X.


Asunto(s)
Coagulación Sanguínea , Factor X/metabolismo , Trombina/metabolismo , beta-Tromboglobulina/metabolismo , Factores de Coagulación Sanguínea/metabolismo , Pruebas de Coagulación Sanguínea , Plaquetas/metabolismo , Humanos , Activación Plaquetaria , Mapas de Interacción de Proteínas , Proteínas Recombinantes/metabolismo
16.
Eur J Cancer ; 66: 47-54, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27525572

RESUMEN

BACKGROUND: Sunitinib is an oral tyrosine kinase inhibitor used for cancer treatment. Patients treated with sunitinib are at higher bleeding risk. As tyrosine kinases are essential for platelet signalling, the effects of sunitinib on platelet function in vitro and in cancer patients on treatment were investigated. PATIENTS AND METHODS: Blood samples were collected from eight healthy volunteers and eight patients diagnosed with metastatic renal cell cancer (RCC) before and 2 weeks on treatment with sunitinib. Platelets from 15 additional healthy individuals were preincubated with sunitinib or vehicle to perform in vitro experiments. Immunofluorescence imaging, western blotting, light transmission aggregometry, whole blood perfusion over collagen, flow cytometry and ELISA were performed. RESULTS: Confocal microscopy indicated that platelets sequester sunitinib in vitro and in patients. In platelets from healthy controls, tyrosine phosphorylation was inhibited by sunitinib. Also, sunitinib dose dependently reduced collagen- and ADP-induced aggregation, collagen-dependent thrombus formation and collagen-induced secretion of platelet-derived growth factor and ß-thromboglobulin. In blood from RCC patients before treatment, thrombus formation and procoagulant activity under flow were 47% and 80% higher than in healthy controls. After 14 d of sunitinib treatment, platelet count was moderately, but significantly decreased (from 243 to 144 × 10(9)/l). At the same time, collagen-induced platelet aggregation as well as thrombus formation and phosphatidylserine exposure under flow were significantly reduced (by 45%, 16% and 61%, respectively). CONCLUSIONS: Sunitinib uptake by platelets inhibits collagen receptor-induced aggregation and thrombus formation via reduction of protein tyrosine phosphorylation and α-granule secretion. This dysfunction may contribute to the higher bleeding tendency observed in sunitinib-treated patients.


Asunto(s)
Antineoplásicos/farmacología , Plaquetas/efectos de los fármacos , Indoles/farmacología , Pirroles/farmacología , Anciano , Anciano de 80 o más Años , Antineoplásicos/administración & dosificación , Coagulación Sanguínea/efectos de los fármacos , Carcinoma de Células Renales/tratamiento farmacológico , Carcinoma de Células Renales/fisiopatología , Estudios de Casos y Controles , Femenino , Voluntarios Sanos , Hemorragia/inducido químicamente , Humanos , Indoles/efectos adversos , Neoplasias Renales/tratamiento farmacológico , Neoplasias Renales/fisiopatología , Masculino , Persona de Mediana Edad , Activación Plaquetaria/efectos de los fármacos , Agregación Plaquetaria/efectos de los fármacos , Pirroles/efectos adversos , Transducción de Señal/efectos de los fármacos , Sunitinib
17.
Thromb Res ; 141 Suppl 2: S12-6, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-27207414

RESUMEN

Platelets play key roles in thrombosis and hemostasis by forming aggregates and providing a procoagulant surface, at which thrombin is generated and fibrin fibers are formed. Here we present an overview of the different mechanisms how platelets orchestrate coagulation processes in thrombus formation in thrombosis and hemostasis. Parts of these are via Ca(2+)-dependent activation responses, leading to phosphatidylserine exposure; swelling to form balloons with increased binding of coagulation factors; and calpain-mediated integrin αIIbß3 cleavage and inactivation. Other mechanisms are secretion of (anti) coagulation factors, and αIIbß3-mediated thrombus retraction, and clot retraction. In a thrombus, coagulation factors are found at both platelets and fibrin fibers. Many of the procoagulant platelet activities are altered in the Scott syndrome.


Asunto(s)
Trastornos de la Coagulación Sanguínea/patología , Plaquetas/patología , Hemostasis , Trombosis/patología , Animales , Coagulación Sanguínea , Trastornos de la Coagulación Sanguínea/sangre , Trastornos de la Coagulación Sanguínea/metabolismo , Plaquetas/metabolismo , Humanos , Activación Plaquetaria , Trombina/metabolismo , Trombosis/sangre , Trombosis/metabolismo
18.
Haematologica ; 100(9): 1131-8, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26113418

RESUMEN

In patients with acute coronary syndrome, dual antiplatelet therapy with aspirin and a P2Y12 inhibitor like prasugrel is prescribed for one year. Here, we investigated how the hemostatic function of platelets recovers after discontinuation of prasugrel treatment. Therefore, 16 patients who suffered from ST-elevation myocardial infarction were investigated. Patients were treated with aspirin (100 mg/day, long-term) and stopped taking prasugrel (10 mg/day) after one year. Blood was collected at the last day of prasugrel intake and at 1, 2, 5, 12 and 30 days later. Platelet function in response to ADP was normalized between five and 30 days after treatment cessation and in vitro addition of the reversible P2Y12 receptor antagonist ticagrelor fully suppressed the regained activation response. Discontinuation of prasugrel resulted in the formation of an emerging subpopulation of ADP-responsive platelets, exhibiting high expression of active integrin αIIbß3. Two different mRNA probes, thiazole orange and the novel 5'Cy5-oligo-dT probe revealed that this subpopulation consisted of juvenile platelets, which progressively contributed to platelet aggregation and thrombus formation under flow. During offset, juvenile platelets were overall more reactive than older platelets. Interestingly, the responsiveness of both juvenile and older platelets increased in time, pointing towards a residual inhibitory effect of prasugrel on the megakaryocyte level. In conclusion, the gradual increase in thrombogenicity after cessation of prasugrel treatment is due to the increased activity of juvenile platelets.


Asunto(s)
Síndrome Coronario Agudo/tratamiento farmacológico , Síndrome Coronario Agudo/metabolismo , Coagulación Sanguínea/efectos de los fármacos , Plaquetas/metabolismo , Infarto del Miocardio/tratamiento farmacológico , Infarto del Miocardio/metabolismo , Clorhidrato de Prasugrel/administración & dosificación , Adenosina Difosfato/metabolismo , Adulto , Anciano , Femenino , Humanos , Masculino , Persona de Mediana Edad , Pruebas de Función Plaquetaria , Complejo GPIIb-IIIa de Glicoproteína Plaquetaria/metabolismo , Receptores Purinérgicos P2Y12/metabolismo
19.
Arterioscler Thromb Vasc Biol ; 35(6): 1374-81, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25908768

RESUMEN

OBJECTIVE: To investigate the roles and signaling pathways of CD40L and CD40 in platelet-platelet interactions and thrombus formation under conditions relevant for atherothrombosis. APPROACH AND RESULTS: Platelets from mice prone to atherosclerosis lacking CD40L (Cd40lg(-/-)Apoe(-/-)) showed diminished αIIbß3 activation and α-granule secretion in response to glycoprotein VI stimulation, whereas these responses of CD40-deficient platelets (Cd40(-/-)Apoe(-/-)) were not decreased. Using blood from Cd40lg(-/-)Apoe(-/-) and Cd40(-/-)Apoe(-/-) mice, the glycoprotein VI-dependent formation of dense thrombi was impaired on atherosclerotic plaque material or on collagen, in comparison with Apoe(-/-) blood. In all genotypes, addition of CD40L to the blood enhanced the growth of dense thrombi on plaques and collagen. Similarly, CD40L enhanced glycoprotein VI-induced platelet aggregation, even with platelets deficient in CD40. This potentiation was antagonized in Pik3cb(R/R) platelets or by inhibiting phosphatidylinositol 3-kinase ß (PI3Kß). Addition of CD40L also enhanced collagen-induced Akt phosphorylation, which was again antagonized by absence or inhibition of PI3Kß. Finally, platelets from Chuk1(A/A)Apoe(-/-) mice deficient in IκB kinase α (IKKα), implicated in CD40 signaling to nuclear factor (NF) κB, showed unchanged responses to CD40L in aggregation or thrombus formation. CONCLUSIONS: Under atherogenic conditions, CD40L enhances collagen-induced platelet-platelet interactions by supporting integrin αIIbß3 activation, secretion and thrombus growth via PI3Kß, but not via CD40 and IKKα/NFκB. This role of CD40L exceeds the no more than modest role of CD40 in thrombus formation.


Asunto(s)
Aterosclerosis/metabolismo , Plaquetas/metabolismo , Antígenos CD40/metabolismo , Ligando de CD40/metabolismo , Quinasa I-kappa B/metabolismo , Fosfatidilinositol 3-Quinasa/metabolismo , Trombosis/metabolismo , Animales , Aterosclerosis/patología , Colágeno/metabolismo , Ratones , Activación Plaquetaria , Transducción de Señal , Trombosis/patología
20.
Thromb Res ; 135(3): 513-20, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25600441

RESUMEN

BACKGROUND: Peripheral arterial disease (PAD) is a progressive vascular disease associated with a high risk of cardiovascular morbidity and death. Antithrombotic prevention is usually applied by prescribing the antiplatelet agent aspirin. However, in patients with PAD aspirin fails to provide protection against myocardial infarction and death, only reducing the risk of ischemic stroke. Platelets may play a role in disease development, but this has not been tested by proper mechanistic studies. In the present study, we performed a systematic evaluation of platelet reactivity in whole blood from patients with PAD using two high-throughput assays, i.e. multi-agonist testing of platelet activation by flow cytometry and multi-parameter testing of thrombus formation on spotted microarrays. METHODS: Blood was obtained from 40 patients (38 on aspirin) with PAD in majority class IIa/IIb and from 40 age-matched control subjects. Whole-blood flow cytometry and multiparameter thrombus formation under high-shear flow conditions were determined using recently developed and validated assays. RESULTS: Flow cytometry of whole blood samples from aspirin-treated patients demonstrated unchanged high platelet responsiveness towards ADP, slightly elevated responsiveness after glycoprotein VI stimulation, and decreased responsiveness after PAR1 thrombin receptor stimulation, compared to the control subjects. Most parameters of thrombus formation under flow were similarly high for the patient and control groups. However, in vitro aspirin treatment caused a marked reduction in thrombus formation, especially on collagen surfaces. When compared per subject, markers of ADP- and collagen-induced integrin activation (flow cytometry) strongly correlated with parameters of collagen-dependent thrombus formation under flow, indicative of a common, subject-dependent regulation of both processes. CONCLUSION: Despite of the use of aspirin, most platelet activation properties were in the normal range in whole-blood from class II PAD patients. These data underline the need for more effective antithrombotic pharmacoprotection in PAD.


Asunto(s)
Aspirina/uso terapéutico , Enfermedad Arterial Periférica/sangre , Activación Plaquetaria/efectos de los fármacos , Inhibidores de Agregación Plaquetaria/uso terapéutico , Trombosis/prevención & control , Anciano , Plaquetas/efectos de los fármacos , Femenino , Humanos , Masculino , Persona de Mediana Edad , Enfermedad Arterial Periférica/complicaciones , Trombosis/etiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...